Abstract
The Near-Surface-Mounted (NSM) technique for Fiber-Reinforced Polymer (FRP) strengthening is widely applied in the seismic retrofitting of concrete structures. The key aspect of the NSM technique lies in the adhesive performance between the FRP, adhesive layer, and concrete. In order to accurately predict the bond strength of embedded reinforced NSM FRP–concrete, this study constructs the relationship between the influencing factors of bonding performance and bond strength based on four machine learning (ML) algorithms: Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGB). A unified and interpretable prediction method for FRP–concrete interface bond strength based on SHAP values and ML algorithms is proposed. The results indicate that the ML models exhibit good predictive performance, with the R2 of the test set ranging from 0.8190 to 0.9621, showing higher accuracy than empirical calculation formulas. Among them, the RF algorithm demonstrates the highest overall accuracy and optimal performance. Additionally, the SHAP (Shapley additional explanations) method quantitatively confirms that the width of the FRP strip has the most significant impact on bond strength. The newly developed hybrid ML model has the potential to become a new choice for accurately assessing the bond strength of NSM FRP strengthening technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.