Abstract
AbstractThroughout their useful life, plastic injection moulds operate in rapidly varying cyclic environments, and are prone to continual degradation. Quantifying the remaining useful life of moulds is a necessary step for minimizing unplanned downtime and part scrap, as well as scheduling preventive mould maintenance tasks such as cleaning and refurbishment. This paper presents a data-driven approach for identifying degradation progression and remaining useful life of moulds, using real-world production data. An industrial data set containing metrology measurements of a solidified plastic part, along with corresponding life-cycle data of 13 high production volume injection moulds, was analyzed. Multivariate Statistical Process Control techniques and XGBoost classification models were used for constructing data-driven models of mould degradation progression, and classifying mould state (early run-in, production, worn-out). Results show the XGBoost model developed using element metrology & relevant mould lifecycle data classifies worn-out moulds with an in-class accuracy of 88%. Lower in-class accuracy of 73% and 61% were achieved for the compared to mould-worn out less critical early run-in and production states respectively.KeywordsSmart manufacturingInjection mouldingData-driven modelMachine learningPredictive maintenance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.