Abstract
Faulty operations of Heating, Ventilation and Air Conditioning (HVAC) chiller systems can lead to discomfort for the users, energy wastage, system unreliability and shorter equipment life. Faults need to be early diagnosed to prevent further deterioration of the system behaviour and energy losses. Since it is not a common practice to collect historical data regarding unforeseen phenomena and abnormal behaviours for HVAC installations, in this paper, a semi-supervised data-driven approach is employed for fault detection and isolation that makes no use of a priori knowledge about abnormal phenomena. The proposed method exploits Principal Component Analysis (PCA) to distinguish anomalies from normal operation variability and a reconstruction-based contribution approach to isolate variables related to faults. The diagnosis task is then tackled by means of a decision table that associates the influence of faults to certain characteristic features. The Fault Detection and Diagnosis (FDD) algorithm performance is assessed by exploiting experimental datasets from two types of water chiller systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.