Abstract

This paper considers event-triggered bipartite consensus issues for discrete-time nonlinear networked multi-agent systems with antagonistic interactions and denial-of-service (DoS) attacks. Firstly, a pseudo partial derivative technology is applied to obtain an equivalent dynamic linearization model of the controlled system. The signed graph theory is employed to analyze the coopetition relationships among agents. Next, a distributed combined measurement error function is formulated to transform the bipartite consensus issue into a consensus issue. Then, an output predictive compensation scheme is proposed to offset the influence of DoS attacks. Furthermore, a dead-zone operator is designed to improve the flexibility of the proposed event-triggered mechanism. Additionally, a data-driven event-triggered resilient bipartite consensus scheme is formulated. Then, the convergence of the proposed method is strictly proved by using the Lyapunov theory and the contraction mapping principle, which indicates that the bipartite consensus error could be cut to a small region around zero. Finally, hardware tasks are conducted to verify the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.