Abstract

This paper proposes an online energy management and optimization method for four-wheel-independent-driving electric vehicles via stochastic model predictive control (SMPC), where velocity is predicted as the foundation to ensure feasibility and efficiency. By utilizing operating data of real-world electric vehicles from a big data platform, a data-driven Markov chain method is adopted to achieve vehicle velocity prediction in an accurate and reliable way. On top of the proposed method, real-time updates of the sample space and online substitution of the velocity-acceleration (V-A) state space can be realized, which mitigates problems of prediction interruption resulting from deficiency of sample state. Simulation results based on a constructed Hardware-in-Loop system indicate effectiveness of velocity prediction with root-mean-square error under 1.3 km/h. In the perspective of the energy conservation, the SMPC method can decrease energy consumption by 7.92% compared with traditional Rule-based methods, which is close to the optimization result of a conventional dynamic programming method. Further simulation and test results demonstrate that the proposed data-driven method is capable of realizing online accurate velocity prediction and energy management for real-world vehicles. • An energy management optimization method for four-wheel-independent-driving vehicles. • A data-driven Markov chain with is adopted for vehicle velocity prediction. • The stochastic model prediction control method is employed for torque allocation. • The proposed energy optimization method is verified through the Hardware-in-Loop test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.