Abstract

Volunteer teams provide valuable support after large-scale disasters. However, excessive volunteer participation poses challenges for formal operations. Therefore, an appropriate decision-making method is required to quickly determine the number of volunteers required after a disaster. This study proposes a data-driven decision-making (D3M) method for typhoon disaster volunteerism that can effectively predict the number of volunteers required. Disaster data from actual cases were gathered, analyzed, and preprocessed to prepare the model. Feature selection, D3M model training and optimization, and model validation were performed to fine-tune the volunteer participant predictions. Using data from an actual typhoon in the Philippines, the rationality and efficacy of the method were verified through a comparative analysis of the experimental results. The proposed method learns from disaster-event data to quickly predict the number of volunteers needed, such that it not only reasonably allocates volunteers to assist professional teams in rescue but also avoids secondary problems caused by an overwhelming response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.