Abstract

Ongoing smart grid activities and associated automation resulted in rich set of data. These data can be utilized for monitoring and estimation of real time photovoltaic (PV) generation. Inherent variability in PV and related impact on power systems is a challenging problem. Improving the accuracy of PV generation estimation is beneficial for both the PV owners and the grid operators. Recently, deep learning algorithms possible by the availability of data have shown its advantages for time series estimation; however, its application on PV generation estimation is still in the early stage. In this paper, a hybrid estimation model with a combination of long-short-term-memory network (LSTM) and persistence model (PM) is developed to provide day-ahead PV estimation at 15-minute time interval with high accuracy and robustness. Simulation results show the superior performance of the proposed method over existing methods for most of the test cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.