Abstract
Valid inference of cause-and-effect relations in observational studies necessitates adjusting for common causes of the focal predictor (i.e., treatment) and the outcome. When such common causes, henceforth termed confounders, remain unadjusted for, they generate spurious correlations that lead to biased causal effect estimates. But routine adjustment for all available covariates, when only a subset are truly confounders, is known to yield potentially inefficient and unstable estimators. In this article, we introduce a data-driven confounder selection strategy that focuses on stable estimation of the treatment effect. The approach exploits the causal knowledge that after adjusting for confounders to eliminate all confounding biases, adding any remaining non-confounding covariates associated with only treatment or outcome, but not both, should not systematically change the effect estimator. The strategy proceeds in two steps. First, we prioritize covariates for adjustment by probing how strongly each covariate is associated with treatment and outcome. Next, we gauge the stability of the effect estimator by evaluating its trajectory adjusting for different covariate subsets. The smallest subset that yields a stable effect estimate is then selected. Thus, the strategy offers direct insight into the (in)sensitivity of the effect estimator to the chosen covariates for adjustment. The ability to correctly select confounders and yield valid causal inferences following data-driven covariate selection is evaluated empirically using extensive simulation studies. Furthermore, we compare the introduced method empirically with routine variable selection methods. Finally, we demonstrate the procedure using two publicly available real-world datasets. A step-by-step practical guide with user-friendly R functions is included. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.