Abstract
As increasingly more semantic real-world data is stored in knowledge graphs, providing intuitive and effective query methods for end-users is a fundamental and challenging task. Since there is a gap between the plain natural language question (NLQ) and structured data, most RDF question/answering (Q/A) systems construct SPARQL queries from NLQs and obtain precise answers from knowledge graphs. A major challenge is how to disambiguate the mapping of phrases and relations in a question to the dataset items, especially in complex questions. In this paper, we propose a novel data-driven graph similarity framework for RDF Q/A to extract the query graph patterns directly from the knowledge graph instead of constructing them with semantically mapped items. An uncertain question graph is presented to model the interpretations of an NLQ, based on which our problem is reduced to a graph alignment problem. In formulating the alignment, both the lexical and structural similarity of graphs are considered, hence, the target RDF subgraph is used as a query graph pattern to construct the final query. We create a pruned entity graph dynamically based on the complexity of an input question to reduce the search space on the knowledge graph. Moreover, to reduce the calculating cost of the graph similarity, we compute the similarity scores only for same-distance graph elements and equip the process with an edge association-aware surface form extraction method. Empirical studies over real datasets indicate that our proposed approach is flexible and effective as it outperforms state-of-the-art methods significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.