Abstract

Standard provisions for wind loads on buildings have traditionally been based on summary tables and/or plots suitable for slide-rule calculations. The accuracy in the definition of wind loads inherent in such tables and plots is far lower than that inherent in current methods for stress computation. Advances in computational power now make it possible to reduce this discrepancy and achieve structural designs for wind that are significantly safer and more economical than current designs. This is true both for routine, low-rise structures and for flexible structures experiencing significant dynamic effects. In this paper, we present the concept of database-assisted design (DAD) along with a discussion of the application software Wind Load Design Environment, a user-friendly tool for designers and code writers that employs the DAD approach. The DAD approach entails the use of large databases of aerodynamic pressures, the optional use of databases of directional extreme wind speeds, and the use of structural information needed for the description of linear or nonlinear structural behavior. We present progress achieved to date, describe current efforts and future needs, and discuss the implications of DAD for reliability-based design and performance-based standards development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.