Abstract

Interfacial structures and interactions of two-dimensional (2D) materials on solid substrates are of fundamental importance for fabrications and applications of 2D materials. However, selection of a suitable solid substrate to grow a 2D material, determination and control of 2D material-substrate interface remain a big challenge due to the large diversity of possible configurations. Here, we propose a computational framework to select an appropriate substrate for epitaxial growth of 2D material and to predict possible 2D material-substrate interface structures and orientations using density functional theory calculations performed for all non-equivalent atomic structures satisfying the symmetry constraints. The approach is validated by the correct prediction of three experimentally reported 2D material-substrate interface systems with only the given information of two parent materials. Several possible interface configurations are also proposed based on this approach. We therefore construct a database that contains these interface systems and has been continuously expanding. This database serves as preliminary guidance for epitaxial growth and stabilization of new materials in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call