Abstract

According to FCC's ruling for white-space spectrum access, white-space devices are required to query a database to determine the spectrum availability. In this paper, we study the database-assisted distributed white-space access point (AP) network design. We first model the cooperative and non-cooperative channel selection problems among the APs as the system-wide throughput optimization and non-cooperative AP channel selection games, respectively, and design distributed AP channel selection algorithms that achieve system optimal point and Nash equilibrium, respectively. We then propose a state-based game formulation for the distributed AP association problem of the secondary users by taking the cost of mobility into account. We show that the state-based distributed AP association game has the finite improvement property, and design a distributed AP association algorithm that can converge to a state-based Nash equilibrium. Numerical results show that the algorithm is robust to the perturbation by secondary users' dynamical leaving and entering the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call