Abstract

In CASP12, 2 types of data-assisted protein structure modeling were experimented. Either SAXS experimental data or cross-linking experimental data was provided for a selected number of CASP12 targets that the CASP12 predictor could utilize for better protein structure modeling. We devised 2 separate energy terms for SAXS data and cross-linking data to drive the model structures into more native-like structures that satisfied the given experimental data as much as possible. In CASP11, we successfully performed protein structure modeling using simulated sparse and ambiguously assigned NOE data and/or correct residue-residue contact information, where the only energy term that folded the protein into its native structure was the term which was originated from the given experimental data. However, the 2 types of experimental data provided in CASP12 were far from being sufficient enough to fold the target protein into its native structure because SAXS data provides only the overall shape of the molecule and the cross-linking contact information provides only very low-resolution distance information. For this reason, we combined the SAXS or cross-linking energy term with our regular modeling energy function that includes both the template energy term and the de novo energy terms. By optimizing the newly formulated energy function, we obtained protein models that fit better with provided SAXS data than the X-ray structure of the target. However, the improvement of the model relative to the 1 modeled without the SAXS data, was not significant. Consistent structural improvement was achieved by incorporating cross-linking data into the protein structure modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.