Abstract

Several assumptions such as normality, linear relationship, and homoscedasticity are frequently required in parametric statistical analysis methods. Data collected from the clinical situation or experiments often violate these assumptions. Variable transformation provides an opportunity to make data available for parametric statistical analysis without statistical errors. The purpose of variable transformation to enable parametric statistical analysis and its final goal is a perfect interpretation of the result with transformed variables. Variable transformation usually changes the original characteristics and nature of units of variables. Back-transformation is crucial for the interpretation of the estimated results. This article introduces general concepts about variable transformation, mainly focused on logarithmic transformation. Back-transformation and other important considerations are also described herein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.