Abstract
In the big data era, it is vital to allocate the vast amount of data to heterogeneous users with different interests. To clinch this goal, various agents including data owners, collectors, and users should cooperate to trade data efficiently. However, the data agents (data owners, collectors, and users) are selfish and seek to maximize their own utilities instead of the overall system efficiency. As such, a sophisticated mechanism is imperative to guide the agents to distribute data efficiently. In this paper, the data trading problem of a data market with multiple data owners, collectors, and users is formulated and an iterative auction mechanism is proposed to coordinate the trading. The proposed mechanism guides the selfish data agents to trade data efficiently in terms of social welfare and avoids direct access of the agents’ private information. We theoretically prove that the proposed mechanism can achieve the socially optimal operation point. Moreover, we demonstrate that the mechanism satisfies appealing economic properties such as individual rationality and weakly balanced budget. Then, we expand the mechanism to nonexclusive data trading, in which the same data can be dispensed to multiple collectors and users. Simulations as well as real data experiments validate the theoretical properties of the mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Signal and Information Processing over Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.