Abstract
ContextSoftware development projects involve the use of a wide range of tools to produce a software artifact. Software repositories such as source control systems have become a focus for emergent research because they are a source of rich information regarding software development projects. The mining of such repositories is becoming increasingly common with a view to gaining a deeper understanding of the development process. ObjectiveThis paper explores the concepts of representing a software development project as a process that results in the creation of a data stream. It also describes the extraction of metrics from the Jazz repository and the application of data stream mining techniques to identify useful metrics for predicting build success or failure. MethodThis research is a systematic study using the Hoeffding Tree classification method used in conjunction with the Adaptive Sliding Window (ADWIN) method for detecting concept drift by applying the Massive Online Analysis (MOA) tool. ResultsThe results indicate that only a relatively small number of the available measures considered have any significance for predicting the outcome of a build over time. These significant measures are identified and the implication of the results discussed, particularly the relative difficulty of being able to predict failed builds. The Hoeffding Tree approach is shown to produce a more stable and robust model than traditional data mining approaches. ConclusionOverall prediction accuracies of 75% have been achieved through the use of the Hoeffding Tree classification method. Despite this high overall accuracy, there is greater difficulty in predicting failure than success. The emergence of a stable classification tree is limited by the lack of data but overall the approach shows promise in terms of informing software development activities in order to minimize the chance of failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.