Abstract
In this paper, the set-membership affine projection (SM-AP) algorithm is utilized to censor non-informative data in big data applications. To this end, the probability distribution of the additive noise signal and the excess of mean-squared error (EMSE) in steady-state are employed in order to estimate the threshold parameter of the single threshold SM-AP (ST-SM-AP) algorithm aiming at attaining the desired update rate. Furthermore, by defining an acceptable range for the error signal, the double threshold SM-AP (DT-SM-AP) algorithm is proposed to detect very large errors due to the irrelevant data such as outliers. The DT-SM-AP algorithm can censor non-informative and irrelevant data in big data applications, and it can improve misalignment and convergence rate of the learning process with high computational efficiency. The simulation and numerical results corroborate the superiority of the proposed algorithms over traditional algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.