Abstract

The Weyl transform is introduced as a rich framework for data representation. Transform coefficients are connected to the Walsh–Hadamard transform of multiscale autocorrelations, and different forms of dyadic periodicity in a signal are shown to appear as different features in its Weyl coefficients. The Weyl transform has a high degree of symmetry with respect to a large group of multiscale transformations, which allows compact yet discriminative representations to be obtained by pooling coefficients. The effectiveness of the Weyl transform is demonstrated through the example of textured image classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.