Abstract

The Wireless Sensor Network (WSN) is regarded as the fastest expanding technological trend in recent years due its application in a variety of sectors. In the monitoring region, several sensor nodes with various sensing capabilities are installed to gather appropriate data and communicate it to the gateway. The proposed system of the heterogeneous WSN employing LoRaWAN-Zigbee based hybrid communication is explored in this research study. To communicate in a network, two Long–Range Wide Area Network (LoRaWAN) sensor clusters and two Zigbee sensor clusters are employed, together with two Zigbee and LoRaWAN converters. The suggested Golden eagle shepherd optimization (GESO) method then forms Zigbee as well as LoRaWAN networking clusters. Furthermore, depending on energy usage and data packet size, the fitness of each sensor node is assessed using the Dynamic Intelligent Reasoning Based Neural (DIRN) approach. MATLAB software is used to implement and execute this study. When the Zigbee network’s transmission distance is 650 m and the LoRaWAN network’s transmission range is 3.5 km, the system can function with a packet loss rate of less than 0.04 percent. This study shows significant gains in the performance of the system when compared to traditional approaches based on digital findings obtained on software solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call