Abstract

This paper describes a data-driven approach to sensor data validation. The data originates from a network of sensors embedded in an indoor environment such as an office, home, factory, public mall or airport. Data analysis is performed to automatically detect events and classify activities taking place within the environment. Sensor failure and in particular intermittent failure, caused by electrical interference, undermines the inference processes. PCA and CCA are compared for detecting intermittent faults and masking such failures. The fault detection relies on models built from historical data. As new sensor observations are collected the model is updated and compared to that previously estimated, where a difference is indicative of a failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.