Abstract

This paper introduces a novel neural network-based technique called system balance-related autoassociative neural networks (SBANN) for steady state data reconciliation. This neural network has the same architecture as traditional feedforward neural networks but the main difference lies in the minimization of an objective function that includes process material and/or energy imbalance terms in addition to the traditional least-squares prediction term. Accordingly, this neural network with the system balance-related objective criterion is able to perform the two basic functions necessary for proper steady state data reconciliation: data smoothing to reduce the data variance and data correction to satisfy material and/or energy balance constraints. This novel technique is illustrated for data reconciliation of a simulated flotation circuit that is widely used in mineral processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.