Abstract
Scan planning is often challenging particularly in steel structure scenes because of its complex shapes and occlusions. Meeting the requirements of data quality for the scan-to-BIM model is also another issue for accurate point cloud data acquisition. To address these issues, this study proposes a solution that determines an optimal number of scans and corresponding scan positions and parameters. Three primary steps include 1) extraction of feature points using a slicing cutting method and range images, 2) evaluation of data quality using visibility check and data density evaluation, and 3) determination of optimal scan configuration using a probabilistic genetic algorithm. In order to validate the proposed solution, a series of lab-scale experiments involving five case studies with different scenarios are conducted and the results show a similarity of 88.4% between simulation and actual experiments, demonstrating the feasibility of the proposed method for steel structure scenes with complex shapes and occlusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.