Abstract

Scan planning is often challenging particularly in steel structure scenes because of its complex shapes and occlusions. Meeting the requirements of data quality for the scan-to-BIM model is also another issue for accurate point cloud data acquisition. To address these issues, this study proposes a solution that determines an optimal number of scans and corresponding scan positions and parameters. Three primary steps include 1) extraction of feature points using a slicing cutting method and range images, 2) evaluation of data quality using visibility check and data density evaluation, and 3) determination of optimal scan configuration using a probabilistic genetic algorithm. In order to validate the proposed solution, a series of lab-scale experiments involving five case studies with different scenarios are conducted and the results show a similarity of 88.4% between simulation and actual experiments, demonstrating the feasibility of the proposed method for steel structure scenes with complex shapes and occlusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.