Abstract

Key to small-angle scattering (SAS) maturing and becoming a mainstream structural biology technique was the work done by the SAS community to establish standards for data quality, model validation and data sharing. Through a consultative process spanning more than a decade and a half, guidelines for publication have been established that include criteria for evaluating data quality and for model validation. In this process gaps were identified that stimulated innovation and development of new tools, for example new measures of model ambiguity and of the goodness-of-fit of a model to SAS data that complement the traditional global fit parameter χ2. The need for a global repository for biomolecular SAS data and models was identified and the SASBDB was established as a searchable, curated, freely accessible, downloadable database of experimental data, experimental conditions, sample details, derived models, and their fit to the data. Importantly, the SASBDB uses a common dictionary format that supports archiving of structures solved using integrative methods to support seamless data exchange with a federated system of public databanks that includes the world-wide Protein Data Bank (wwPDB) as the major repository for structural biology. Thus, biomolecular SAS is now well-positioned to achieve its full potential as a mainstream structural biology technique contributing at the frontier of integrative structural biology and meeting "best practice" standards for data quality assurance and data sharing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call