Abstract

Vibrational spectroscopic chemical imaging is a powerful tool in the pharmaceutical industry to assess the spatial distribution of components within pharmaceutical samples. Recently, the combination of vibrational spectroscopic chemical mapping with serial sectioning has provided a means to visualise the three-dimensional (3D) structure of a tablet matrix. There are recognised knowledge gaps in current tablet manufacturing processes, particularly regarding the size, shape and distribution of components within the final drug product. The performance of pharmaceutical tablets is known to be primarily influenced by the physical and chemical properties of the formulation. Here, we describe the data processing methods required to extract quantitative domain size and spatial distribution statistics from 3D vibrational spectroscopic chemical images. This provides a means to quantitatively describe the microstructure of a tablet matrix and is a powerful tool to overcome knowledge gaps in current tablet manufacturing processes, optimising formulation development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.