Abstract

The matrix pencil method (MPM) is explored for stable, reproducible data processing in nuclear magnetic resonance (NMR) relaxometry. Data from one-dimensional and two-dimensional relaxometry experiments designed to measure transverse relaxation T2, longitudinal relaxation T1, diffusion coefficient D values, and their correlations in a standard olive oil/water mixture serve as a platform available to any NMR spectroscopist to compare the performance of the MPM to the benchmark inverse Laplace transform (ILT). The data from two practical examples, including the drying of a solvent polymer system and the enzymatic digestion of polysialic acid, were also explored with the MPM and ILT. In the cases considered here, the MPM appears to outperform the ILT in terms of resolution and stability in the determination of fundamental constants for complex materials and mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.