Abstract

BackgroundProteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent. The challenges associated with the analysis of large-scale multivariate proteomic datasets have been widely discussed in medical research and biomarker discovery. This concept has been introduced to ecotoxicology only recently, so data processing and classification analysis need to be refined before they can be readily applied in biomarker discovery and monitoring studies.ResultsData sets obtained from a case study of oil pollution in the Blue mussel were investigated for differential protein expression by retentate chromatography-mass spectrometry and decision tree classification. Different tissues and different settings were used to evaluate classifiers towards their discriminatory power. It was found that, due the intrinsic variability of the data sets, reliable classification of unknown samples could only be achieved on a broad statistical basis (n > 60) with the observed expression changes comprising high statistical significance and sufficient amplitude. The application of stringent criteria to guard against overfitting of the models eventually allowed satisfactory classification for only one of the investigated data sets and settings.ConclusionMachine learning techniques provide a promising approach to process and extract informative expression signatures from high-dimensional mass-spectrometry data. Even though characterisation of the proteins forming the expression signatures would be ideal, knowledge of the specific proteins is not mandatory for effective class discrimination. This may constitute a new biomarker approach in ecotoxicology, where working with organisms, which do not have sequenced genomes render protein identification by database searching problematic. However, data processing has to be critically evaluated and statistical constraints have to be considered before supervised classification algorithms are employed.

Highlights

  • Proteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent

  • The present study focuses on pre-processing and analysis of proteomic MS data generated with surface-enhanced laser desorption/ ionisation time-of-flight mass-spectrometry (SELDI), thereby taking a refined and more conservative approach reported previously [5,8,9]

  • SELDI profiling of gill proteins A panel of gill-spectra (n = 51 for C, n = 66 for oil and n = 55 for spiked oil exposure (sO); note: the discrepancy between the final number of spectra analysed and the number of animals sampled in total results from the removal of low quality spectra prior to analysis; see material and methods section) yielded 55 peaks with differential expression

Read more

Summary

Introduction

Proteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent. The challenges associated with the analysis of large-scale multivariate proteomic datasets have been widely discussed in medical research and biomarker discovery. This concept has been introduced to ecotoxicology only recently, so data processing and classification analysis need to be refined before they can be readily applied in biomarker discovery and monitoring studies

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.