Abstract

Wireless charging vehicle to grid (V2G) system is not-so-futuristic. It can maintain the power supply balance and stabilize the grid through a wireless link between vehicles using batteries based on energy supply-demand statistics. Most of the existing privacy preservation methods are based on data tampering approaches (e.g., encryption, adding noise, aggregation), which are not practicable over V2G due to complexity in billing and inaccurate state estimation. In this paper, we develop a novel adaptive demand-side energy management framework by employing federated learning-based privacy preservation for the wireless charging V2G systems. Our framework learns the temporal evolution of energy consumption of dynamic charging electric vehicles in a distributed fashion and exploits the reinforcement learning model for cost-saving and reward maximization. The convergence and the privacy preservation properties of the framework are demonstrated with extensive evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.