Abstract

A self-driving vehicle can navigate autonomously in smart cities without the need for human intervention. The emergence of Autonomous Connected Vehicles (ACVs) poses a substantial threat to public and passenger safety due to the possibility of cyber-attacks, which encompass remote hacking, manipulation of sensor data, and probable disablement or accidents. The sensors collect data to facilitate the network’s recognition of local landmarks, such as trees, curbs, pedestrians, signs, and traffic lights. ACVs gather vast amounts of data, encompassing the exact geographical coordinates of the vehicle, captured images, and signals received from various sensors. To create a fully autonomous system, it is imperative to intelligently integrate several technologies, such as sensors, communication, computation, machine learning (ML), data analytics, and other technologies. The primary issues in ACVs involve data privacy and security when instantaneously exchanging substantial volumes of data. This study investigates related data security and privacy research in ACVs using the Blockchain-enabled Federated Reinforcement Learning (BFRL) framework. This paper provides a literature review examining data security and privacy in ACVs and the BFRL framework that can be used to protect ACVs. This study presents the integration of FRL and Blockchain (BC) in the context of smart cities. Furthermore, the challenges and opportunities for future research on ACVs utilising BFRL frameworks are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.