Abstract

Heterogeneous multiprocessor systems, which are composed of a mix of processing elements, such as commodity multicore processors, graphics processing units (GPUs), and others, have been widely used in scientific computing community. Software applications incorporate the code designed and optimized for different types of processing elements in order to exploit the computing power of such heterogeneous computing systems. In this paper, we consider the problem of optimal distribution of the workload of data-parallel scientific applications between processing elements of such heterogeneous computing systems. We present a solution that uses functional performance models (FPMs) of processing elements and FPM-based data partitioning algorithms. Efficiency of this approach is demonstrated by experiments with parallel matrix multiplication and numerical simulation of lid-driven cavity flow on hybrid servers and clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.