Abstract

In this presentation, we consider the image-composition scheme for parallel volume rendering in which each processor is assigned a portion of the volume. A processor renders its data by using any existing volume-rendering algorithm. We describe one such parallel algorithm that also takes advantage of vector-processing capabilities. The resulting images from all processors are then combined (composited) in visibility order to form the final image. The major advantage of this approach is that, as viewing and shading parameters change, only 2D partial images, and not 3D volume data, are communicated among processors. Through experimental results and performance analysis, we show that our parallel algorithm is amenable to extremely efficient implementations on distributed memory, multiple instruction-multiple data (MIMD), vector-processor architectures. This algorithm is also very suitable for hardware implementation based on image composition architectures. It supports various volume-rendering algorithms, and it can be extended to provide load-balanced execution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.