Abstract
This paper provides simulated datasets for different versions of small-scale physical sinkhole models that are essential to understand the sinkhole formation rate. These physical models were used in experiments to monitor ground settlement or collapse due to leakage from an underground pipeline. The factors under consideration were the subsurface soil profile, pattern of water flow, and leakage position in the pipeline. The experimental results and statistical analysis showed that the subsurface soil strata conditions dominated the sinkhole occurrence mechanism, although other factors also contributed to the settlement. The results also showed that the subsurface soil comprising strata sandy clay, limestone, and bedrock (SC-LS-BR) dominates the sinkhole mechanism. The data are organized and formated in a useful structure. Specifically, the dataset is presented in terms of tables to illustrate the settlements in different soil profiles under various conditions. This analysis was then used to predict the sinkhole risk level under different conditions. The formulated dataset and the results can be considered in developing a sinkhole risk index (SRI) and identifying sinkhole risk areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Data in Brief
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.