Abstract

The endo-1,4-β-xylanase GH11 from the hemicellulose-degrading bacterium Thermoanaerobacterium saccharolyticum (TsaGH11) has been characterized as a thermophilic enzyme. TsaGH11 exhibits its maximum activity at pH 5.0 and 70 °C, along with superior properties towards beechwood xylan, with a Km of 12.9 mg mL⁻¹ and a Kcat of 34,015.3 s⁻¹. The room-temperature and cryogenic crystal structures of TsaGH11 were determined using serial synchrotron crystallography (SSX) and conventional macromolecular crystallography techniques, respectively. The high-resolution crystal structure of TsaGH11 was successfully determined, and the flexibility of the thumb domain at room temperature was elucidated. During SSX data collection, a high density of crystal samples in the sample holder led to an unprecedentedly high multi-crystal hit rate of ∼200 %. Data containing these multi-crystal hits will potentially be a valuable resource for developing indexing algorithms for multi-crystal hit patterns in serial crystallography (SX) data processing. To contribute to developing SX data processing, this paper provides detailed and specific information about the data collection and processing of TsaGH11 obtained through SSX experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call