Abstract

Generally, crimes influence organisations as it starts occurring frequently in society. Because of having many dimensions of crime data, it is difficult to mine the available information using off the shelf or statistical data analysis tools. Improving this process will aid the police as well as crime protection agencies to solve the crime rate in a faster period. Also, criminals can often be identified based on crime data. Data mining includes strategies at the convergence of machine learning and database frameworks. Using this concept, we can extract previously unknown useful information and their patterns of occurrence from unstructured data. The sole purpose of this paper is to give an idea of how data mining can be utilised by crime investigation agencies to discover relevant precautionary measures from prediction rates. Data sets are analysed by some supervised classification algorithms, namely decision tree, K-nearest neighbours (KNN) and random forest algorithms. Crime forecasting is done for frequently occurring crimes like robbery, assault, theft, etc. Specifically, the results indicate the superiority of the random forest algorithm in test accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.