Abstract

Novel coronavirus (COVID-19 or 2019-nCoV) pandemic has neither clinically proven vaccine nor drugs; however, its patients are recovering with the aid of antibiotic medications, anti-viral drugs, and chloroquine as well as vitamin C supplementation. It is now evident that the world needs a speedy and quicker solution to contain and tackle the further spread of COVID-19 across the world with the aid of non-clinical approaches such as data mining approaches, augmented intelligence and other artificial intelligence techniques so as to mitigate the huge burden on the healthcare system while providing the best possible means for patients’ diagnosis and prognosis of the 2019-nCoV pandemic effectively. In this study, data mining models were developed for the prediction of COVID-19 infected patients’ recovery using epidemiological dataset of COVID-19 patients of South Korea. The decision tree, support vector machine, naïve Bayes, logistic regression, random forest, and K-nearest neighbor algorithms were applied directly on the dataset using python programming language to develop the models. The model predicted a minimum and maximum number of days for COVID-19 patients to recover from the virus, the age group of patients who are of high risk not to recover from the COVID-19 pandemic, those who are likely to recover and those who might be likely to recover quickly from COVID-19 pandemic. The result of Present study shown the prediction of the coronavirus patient. For that Machine learning and Artificial Intelligence technology ARIMA utilized. KNN based Clustering used for the clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.