Abstract
A novel method named DF-PLS based on partial least squares (PLS) regression combined with data fusion (DF) was applied to enhance the ability of extracting characteristic information and the quality of regression for the simultaneous spectrophotometric determination of Cu(| |), Ni(|I I) and Cr(I I). Data fusion is a technique that seamlessly integrates information from disparate source to produce a single model or decision. Wavelet representations of signals provide a local time-frequency description and are multiscale in nature, thus in the wavelet domain, the quality of noise removal are implemented by a scale-dependent threshold method. Information from different wavelet scales is just like different sources of information. Integrating the information from different wavelet scales to obtain a PLS model belongs to the technique of data fusion. PLS was applied for multivariate calibration and noise reduction by eliminating the less important latent variables. Experimental results showed the DF-PLS method to be successful for simultaneous multicomponent determination even where there was severe overlap of spectra and to be better than PLS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.