Abstract

The bond-valence model is a reliable way to validate assumed oxidation states based on structural data. It has successfully been employed for analyzing metal-binding sites in macromolecule structures. However, inconsistent results for heme-based structures suggest that some widely used bond-valence R0 parameters may need to be adjusted in certain cases. Given the large number of experimental crystal structures gathered since these initial parameters were determined and the similarity of binding sites in organic compounds and macromolecules, the Cambridge Structural Database (CSD) is a valuable resource for refining metal-organic bond-valence parameters. R0 bond-valence parameters for iron(II), iron(III) and other metals have been optimized based on an automated processing of all CSD crystal structures. Almost all R0 bond-valence parameters were reproduced, except for iron-nitrogen bonds, for which distinct R0 parameters were defined for two observed subpopulations, corresponding to low-spin and high-spin states, of iron in both oxidation states. The significance of this data-driven method for parameter discovery, and how the spin state affects the interpretation of heme-containing proteins and iron-binding sites in macromolecular structures, are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.