Abstract
Data Mining and Data Warehousing are two hot topics in the database research area. Until recently, conventional data mining algorithms were primarily developed for a relational environment. But a data warehouse database is based on a multidimensional model. In our paper we apply this basis for a seamless integration of data mining in the multidimensional model for the example of discovering association rules. Furthermore, we propose this method as a userguided technique because of the clear structure both of model and data. We present both the theoretical basis and efficient algorithms for data mining in the multidimensional data model. Our approach uses directly the requirements of dimensions, classifications and sparsity of the cube. Additionally we give heuristics for optimizing the search for rules.KeywordsData MiningAssociation RuleMinimum SupportFrequent ItemsetsMultidimensional ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.