Abstract
We aim to develop a real-time feedback system of learning strategies during lesson time to improve academic achievement. It has been known that mutual viewing-based learning is an effective educational method. However, even though mutual viewing is an effective lesson style, there are effective or ineffective learning strategies in the learners’ individual activities. In general, the method of evaluating learning strategies is a questionnaire survey. However, the questionnaire cannot measure the learning strategies in real time. Thus, it is difficult to detect the students who use ineffective learning strategies during lesson time in real time. Recently, a system that can measure the learning strategies in real time has been developed. Using this system, it is possible to detect students who use ineffective learning strategies during lesson time on the mutual viewing-based learning. From this point of view, we aim to develop a recommendation system for real-time learning strategies for teachers and students to achieve a highly educational effect. For this purpose, we must know the features of effective or ineffective learning strategies via a system that can measure learning strategies. In this paper, we report the discovery of features of effective or ineffective learning strategies based on the data-mining approach using thek-means method, transition diagram, and random forest. We classified the time-series learning strategies over 40 min into 216 strategies and surveyed the improvement probability of academic achievement via a random-forest-based classification model. By embedding our results into the system, we may be able to automatically detect students who use ineffective learning strategies and recommend effective learning strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.