Abstract

ABSTRACTPredicting crystal structure is one of the most fundamental problems in materials science and a key early step in computational materials design. Ab initio simulation methods are a powerful tool for predicting crystal structure, but are too slow to explore the extremely large space of possible structures for new alloys. Here we describe ongoing work on a novel method (Data Mining of Quantum Calculations, or DMQC) that applies data mining techniques to existing ab initio data in order to increase the efficiency of crystal structure prediction for new alloys. We find about a factor of three speedup in ab intio prediction of crystal structures using DMQC as compared to naïve random guessing. This study represents an extension of work done by Curtarolo, et al. [1] to a larger library of data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.