Abstract

Denial of Service attacks remain one of the most serious threats to the Internet nowadays. In this study, we propose an algorithm for detection of Denial of Service attacks that utilize SSL/TLS protocol. These protocols encrypt the data of network connections on the application layer which makes it impossible to detect attackers activity based on the analysis of packet payload. For this reason, we concentrate on statistics that can be extracted from packet headers. Based on these statistics, we build a model of normal user behavior by using several data mining algorithms. Once the model has been built, it is used to detect DoS attacks. The proposed framework is tested on the data obtained with the help of a realistic cyber environment that enables one to construct real attack vectors. The simulations show that the proposed method results in a higher accuracy rate when compared to other intrusion detection techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.