Abstract

Our previous studies found that the C-X-C motif chemokine receptor 5 (CXCR5) loss leads to retinal pigment epithelium (RPE) dysfunction and AMD pathogenesis. The current study aimed to characterize the G protein-coupled receptor (GPCR) structure of CXCR5 and analyze its interactions with AMD-related risk genes. The sequence alignments, homology model of CXCR5 and structural assessment analysis were performed. Data and text mining were then performed to identify AMD-related risk genes and their interaction with CXCR5 using statistical and mathematical algorithms. Sequence alignment and phylogenetic tree analysis revealed that human CXCR5 was highly similar (85.4839%) to the rabbit. The least similarity (33.871%) was found to be in zebrafish compared to the other species. The CXCR5 model structural assessment and secondary structure analysis exhibited an excellent model. Network analysis revealed that IL10, TNF, ICAM1, CXCL1, CXCL8, APP, TLR4, SELL, C3, IL17A and CCR2 were the most connected genes CXCR5. These findings suggest that CXCR5 signaling may regulate the biological function of RPE and modulate AMD pathophysiology via GPCR signaling and interacting with identified AMD risk genes. In summary, the data presented here provide novel and crucial insights into the molecular mechanisms of CXCR5 involvement in AMD. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.