Abstract
Data mining and analytics have played an important role in knowledge discovery and decision making/supports in the process industry over the past several decades. As a computational engine to data mining and analytics, machine learning serves as basic tools for information extraction, data pattern recognition and predictions. From the perspective of machine learning, this paper provides a review on existing data mining and analytics applications in the process industry over the past several decades. The state-of-the-art of data mining and analytics are reviewed through eight unsupervised learning and ten supervised learning algorithms, as well as the application status of semi-supervised learning algorithms. Several perspectives are highlighted and discussed for future researches on data mining and analytics in the process industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.