Abstract
This paper introduces a new approach for mining if-then rules in databases with uncertainty and incompleteness. The approach is based on the combination of Generalization Distribution Table (GDT) and the Rough Set methodology. A GDT is a table in which the probabilistic relationships between concepts and instances over discrete domains are represented. By using a GDT as a hypothesis search space and combining the GDT with the rough set methodology, noises and unseen instances can be handled, biases can be flexibly selected, background knowledge can be used to constrain rule generation, and if-then rules with strengths can be effectively acquired from large, complex databases in an incremental, bottom-up mode. In this paper, we focus on basic concepts and an implementation of our methodology.KeywordsDecision TableDecision AttributeConcept DescriptionPrior Probability DistributionNoise RateThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.