Abstract

MapReduce is widely used in cloud applications for large-scale data processing. The increasing number of interactive cloud applications has led to an increasing need for MapReduce real-time scheduling. Most MapReduce applications are data-oriented and nonpreemptively executed. Therefore, the problem of MapReduce real-time scheduling is complicated because of the trade-off between run-time blocking for nonpreemptive execution and data-locality. This paper proposes a data-locality-aware MapReduce real-time scheduling framework for guaranteeing quality of service for interactive MapReduce applications. A scheduler and dispatcher that can be used for scheduling two-phase MapReduce jobs and for assigning jobs to computing resources are presented, and the dispatcher enable the consideration of blocking and data-locality. Furthermore, dynamic power management for run-time energy saving is discussed. Finally, the proposed methodology is evaluated by considering synthetic workloads, and a comparative study of different scheduling algorithms is conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.