Abstract
The data management landscape associated with the Global Ocean Observing System is distributed, complex, and only loosely coordinated. Yet interoperability across this distributed landscape is essential to enable data to be reused, preserved, and integrated and to minimize costs in the process. A building block for a distributed system in which component systems can exchange and understand information is standardization of data formats, distribution protocols, and metadata. By reviewing several data management use cases we attempt to characterize the current state of ocean data interoperability and make suggestions for continued evolution of the interoperability standards underpinning the data system. We reaffirm the technical data standard recommendations from previous OceanObs conferences and suggest incremental improvements to them that can help the GOOS data system address the significant challenges that remain in order to develop a truly multidisciplinary data system.
Highlights
Ocean observing programs of varying geographic or disciplinary scope have been coordinating globally for decades in an effort to develop an efficient, sustainable, and complete Global Ocean Observing System (GOOS) of systems
Balancing an operational perspective based on mature technologies (e.g., CF/netCDF/OPeNDAP) against the need for research into new technologies to bridge communities will be essential
NS, HS, KB, ML, and SA contributed manuscript ideas and text
Summary
Ocean observing programs of varying geographic or disciplinary scope have been coordinating globally for decades in an effort to develop an efficient, sustainable, and complete Global Ocean Observing System (GOOS) of systems. An example of cross-jurisdictional discovery is the Committee on Earth Observation Systems (CEOS) Common Data Assets (CDA) infrastructure, which facilitates federated search of interagency data holdings, including, NASA, NOAA, ESA, and other space agencies This general architecture and approach, fundamentally enabled by data interoperability across systems that stems from the harmonized use of International Organization for Standardization (ISO) geospatial metadata standards, serves as a scalable implementation model for GEOSS, of which GOOS is a part. These templates, along with documentation and examples, serve as a practical roadmap for the implementation of existing CF and ACDD standards to the range of spatial feature types characteristic of ocean and other environmental data: point, profile, trajectory, time series, and combinations of these discrete geometry types These templates are being leveraged by other agency data centers such as NASA/PODAAC to ensure that oceanographic field campaign datasets submitted are archive quality and interoperable, such that they can be readily assimilated and disseminated via standards-aware tools/services and consumed by remote software applications. A promising area of development is in server side processing, especially when combined with cloud computing architectures (Vance et al, 2019)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.