Abstract

A novel device for data interchange among space-division multiplexed cores inside MCF is demonstrated using numerical simulations. The device allows complete exchange of all WDM data channels between MCF cores in propagation direction whether the channels have the same or different sets of wavelengths. This is crucial in future MCF optical networks where in-fiber data interchange over space-division multiplexed cores can allow for a simple and fast data swapping among cores without a need for space-division demultiplexing to single-mode single-core fibers. The data core-interchange (DCI) device consists of a graded refractive-index rectangular waveguide enclosing the two interchanged cores in addition to the cladding region in between them. Both finite-difference-time-domain (FDTD) and eigenmode expansion (EME) simulations are performed to verify the device operation and characterize its performance. The simulations demonstrate that the DCI has a very short-length with polarization independent operation, and high performance over the broadband wavelength range S, C, L, and U bands. Moreover, the device shows a high coupling-factor of −0.13dB with small cross-talk, back-reflection, and return-loss of −26.3, −46.1, and −48.8dB, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.