Abstract

The dynamic interplay of signaling networks in most major cellular processes is characterized by the orchestration of reversible protein phosphorylation. Consequently, analytic methods such as quantitative phospho-peptidomics have been pushed forward from a highly specialized edge-technique to a powerful and versatile platform for comprehensively analyzing the phosphorylation profile of living organisms. Despite enormous progress in instrumentation and bioinformatics, a high number of missing values caused by the experimental procedure remains a major problem, due to either a random phospho-peptide enrichment selectivity or borderline signal intensities, which both cause the exclusion for fragmentation using the commonly applied data dependent acquisition (DDA) mode. Consequently, an incomplete dataset reduces confidence in the subsequent statistical bioinformatic processing. Here, we successfully applied data independent acquisition (DIA) by using the filamentous fungus Magnaporthe oryzae as a model organism, and could prove that while maintaining data quality (such as phosphosite and peptide sequence confidence), the data completeness increases dramatically. Since the method presented here reduces the LC-MS/MS analysis from 3 h to 1 h and increases the number of phosphosites identified up to 10-fold in contrast to published studies in Magnaporthe oryzae, we provide a refined methodology and a sophisticated resource for investigation of signaling processes in filamentous fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.