Abstract

Casein kinase 1 (CK1) is serine/threonine protein kinase highly conserved among eukaryotes, and regulates multiple developmental and signaling events through phosphorylation of target proteins. Arabidopsis early flowering 1 (EL1)-like (AELs) are plant-specific CK1s with varied functions, but identification and validation of their substrates is a major bottleneck in elucidating their physiological roles. Here, we conducted a quantitative phosphoproteomic analysis in data-independent acquisition mode to systematically identify CK1 substrates. We extracted proteins from seedlings overexpressing individual AEL genes (AEL1/2/3/4-OE) or lacking AEL function (all ael single mutants and two triple mutants) to identify the high-confidence phosphopeptides with significantly altered abundance compared to wild-type Col-0. Among these, we selected 3985 phosphopeptides with higher abundance in AEL-OE lines or lower abundance in ael mutants compared with Col-0 as AEL-upregulated phosphopeptides, and defined 1032 phosphoproteins. Eight CK1s substrate motifs were enriched among AEL-upregulated phosphopeptides and verified, which allowed us to predict additional candidate substrates and functions of CK1s. We functionally characterized a newly identified substrate C3H17, a CCCH-type zinc finger transcription factor, through biochemical and genetic analyses, revealing a role for AEL-promoted C3H17 protein stability and transactivation activity in regulating embryogenesis. As CK1s are highly conserved across eukaryotes, we searched the rice, mouse, and human protein databases using newly identified CK1 substrate motifs, yielding many more candidate substrates than currently known, largely expanding our understanding of the common and distinct functions exerted by CK1s in Arabidopsis and humans, facilitating future mechanistic studies of CK1-mediated phosphorylation in different species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.