Abstract

With the advancement of engineering techniques, underground shield tunneling projects have also started incorporating emerging technologies to monitor the forces and displacements during the construction and operation phases of shield tunnels. Monitoring devices installed on the tunnel segment components generate a large amount of data. However, due to various factors, data may be missing. Hence, the completion of the incomplete data is imperative to ensure the utmost safety of the engineering project. In this research, a missing data imputation technique utilizing Random Forest (RF) is introduced. The optimal combination of the number of decision trees, maximum depth, and number of features in the RF is determined by minimizing the Mean Squared Error (MSE). Subsequently, complete soil pressure data are artificially manipulated to create incomplete datasets with missing rates of 20%, 40%, and 60%. A comparative analysis of the imputation results using three methods-median, mean, and RF-reveals that this proposed method has the smallest imputation error. As the missing rate increases, the mean squared error of the Random Forest method and the other two methods also increases, with a maximum difference of about 70%. This indicates that the random forest method is suitable for imputing monitoring data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.