Abstract

We present an operational system for multi-sensor data fusion implemented at the Finnish Environment Institute. The system uses Ensemble Kalman filter and smoother algorithms, which are often used for probabilistic analysis of multi-sensor data. Uncertainty and spatial and temporal correlations present in the available observation data are accounted for to obtain accurate and realistic results. To test the data fusion system, daily chlorophyll-a concentration has been modelled across northern shoreline of Gulf of Finland over the period of August 1st – October 31st 2011. Chlorophyll-a data from routine monitoring stations, ferrybox measurements, and data derived from Medium Resolution Imaging Spectrometer (MERIS) instrument on board the ENVISAT satellite has been used as input. The data fusion system demonstrates the use of existing and well-known Ensemble Kalman filtering and smoothing methods for improving water quality monitoring programs and for ensuring compliance with ecological standards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.